
Lecture 16: Talagrand Inequality Application

Talagrand Inequality



Longest Increasing Subsequence I

Suppose X = (X1, . . . ,Xn), where each Xi is independent and
uniformly distributed over Ωi = [0, 1)

We are interested in demonstrating a concentration bound for
f (X), where f (X) is the longest increasing subsequence in
(X1, . . . ,Xn)

Observation. Consider any x ∈ Ω := Ω1 ×· · · × Ωn. If
f (x) = k (i.e., the longest increased subsequence in x is k),
then there is a set Kx = {i1, . . . , ik} ⊆ {1, . . . , n} such that Kx

denotes the indices of the longest increasing subsequence in x

Observation. Consider any y ∈ Ω. Note that if y agrees with
x at all the indices in Kx , then we have f (y) > f (x) (it is
possible that y has a longest increasing subsequence, but,
definitely, it will not be shorter than the length of the longest
increasing subsequence in x)
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Longest Increasing Subsequence II

Observation. Let us generalize the previous observation
further. Consider any y ∈ Ω. Note that if y agrees with x at
all indices in Kx except at ` indices. Then, we have
f (y) > f (x)− `. Formally, we can write this as follows

f (y) > f (x)−
∣∣{i : i ∈ Kx and xi 6= yi}

∣∣
Intuitively, we incur a penalty for every i ∈ Kx where x and y
differ. Let us fix αx = (α1, . . . , αn) such that

αi =

0 i 6∈ Kx

1√
|Kx |

i ∈ Kx

Note that |Kx | = f (x). So, we conclude that

f (y) > f (x)−
√
f (x)dαx (x , y)
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Longest Increasing Subsequence III

Rearranging, we get that

dαx (x , y) >
f (x)− f (y)√

f (x)

Since, dT (·, ·) is a supremum of dα(·, ·) over all α with
norm-1, we get that

dT (x , y) >
f (x)− f (y)√

f (x)

Define Aa = {y : y ∈ Ω and f (y) 6 a}. So, for all y ∈ Aa, we
have f (y) 6 a. Therefore, for any y ∈ Aa, we get

dT (x , y) >
f (x)− a√

f (x)
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Longest Increasing Subsequence IV

Since, the inequality holds for all y ∈ Aa, we conclude that

dT (x ,Aa) >
f (x)− a√

f (x)

Observation. If f (x) > a + E , then

dA(x ,Aa) >
E√
a + E

So, we conclude that

P
[
f (X) > a + E

]
6 P

[
dT (X,Aa) >

E√
a + E

]
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Longest Increasing Subsequence V

Multiplying both sides by P [X ∈ Aa], we get

P [X ∈ Aa] · P
[
f (X) > a+ E

]
6 P [X ∈ Aa] · P

[
dT (X,Aa) >

E√
a+ E

]
6 exp

(
− E 2

4(a+ E)

)

The last inequality is due to Talagrand inequality.

Let m be the median of the random variable f (X)

Suppose we set a = m. Then, we have P [X ∈ Aa] > 1/2.
Therefore, we conclude that

P
[
f (X) > m + E

]
6 2 exp

(
− E 2

4(m + E )

)

This concentration inequality implies a concentration radius of
E =

√
n
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Longest Increasing Subsequence VI

Suppose we set a + E = m. Then, we have
P
[
f (X) > aE

]
> 1/2. s Then, we conclude

P [X ∈ Aa] = P
[
f (X) 6 m − E

]
6 2 exp

(
− E 2

4m

)

Again, the radius of concentration is
√
m.
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Configuration Function

The approach of applying the Talagrand inequality to the
problem of longest increasing subsequence can be generalized
to several problems
Consider the definition of c-configuration functions

Definition (Configuration Functions)

A function f is a c-configuration function, if for every x , y , there
exists αx ,y such that the following holds

f (y) > f (x)−
√
c · f (x)dαx,y (x , y)

Note that the longest increasing subsequence defines f (·) that
is 1-configuration function. The derivation used above can be
identically used for c-configuration functions
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